Plurisubharmonic functions on smooth domains.

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Smooth Approximation of Plurisubharmonic Functions on Almost Complex Manifolds

This note establishes smooth approximation from above for Jplurisubharmonic functions on an almost complex manifold (X, J). The following theorem is proved. Suppose X is J-pseudoconvex, i.e., X admits a smooth strictly J-plurisubharmonic exhaustion function. Let u be an (upper semi-continuous) J-plurisubharmonic function on X. Then there exists a sequence uj ∈ C∞(X) of smooth strictly Jplurisub...

متن کامل

Tangents of plurisubharmonic functions

Tangents of plurisubharmonic functions Local properties of plurisubharmonic functions are studied by means of the notion of tangent which describes the behavior of the function near a given point. We show that there are plurisubharmonic functions with several tangents, disproving a conjecture of Reese Harvey.

متن کامل

Some Remarks on Approximation of Plurisubharmonic Functions

Let Ω be a domain in Cn. An upper semicontinuous function u : Ω → [−∞,∞) is said to be plurisubharmonic if the restriction of u to each complex line is subharmonic (we allow the function identically −∞ to be plurisubharmonic). We say that u is strictly plurisubharmonic if for every z0 ∈ Ω there is a neigbourhood U of z0 and λ > 0 such that u(z) − λ|z|2 is plurisubharmonic on U . We write PSH(Ω)...

متن کامل

Local inequalities for plurisubharmonic functions

The main objective of this paper is to prove a new inequality for plurisubharmonic functions estimating their supremum over a ball by their supremum over a measurable subset of the ball. We apply this result to study local properties of polynomial, algebraic and analytic functions. The paper has much in common with an earlier paper [Br] of the author.

متن کامل

The ∂̄-neumann Operator on Lipschitz Pseudoconvex Domains with Plurisubharmonic Defining Functions

On a bounded pseudoconvex domain in C with a plurisubharmonic Lipschitz defining function, we prove that the ∂̄-Neumann operator is bounded on Sobolev (1/2)-spaces. 0. Introduction LetD be a bounded pseudoconvex domain in C with the standard Hermitian metric. The ∂̄-Neumann operator N for (p, q)-forms is the inverse of the complex Laplacian = ∂̄ ∂̄∗ + ∂̄∗∂̄ , where ∂̄ is the maximal extension of the C...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: MATHEMATICA SCANDINAVICA

سال: 1983

ISSN: 1903-1807,0025-5521

DOI: 10.7146/math.scand.a-12014