Plurisubharmonic functions on smooth domains.
نویسندگان
چکیده
منابع مشابه
Smooth Approximation of Plurisubharmonic Functions on Almost Complex Manifolds
This note establishes smooth approximation from above for Jplurisubharmonic functions on an almost complex manifold (X, J). The following theorem is proved. Suppose X is J-pseudoconvex, i.e., X admits a smooth strictly J-plurisubharmonic exhaustion function. Let u be an (upper semi-continuous) J-plurisubharmonic function on X. Then there exists a sequence uj ∈ C∞(X) of smooth strictly Jplurisub...
متن کاملTangents of plurisubharmonic functions
Tangents of plurisubharmonic functions Local properties of plurisubharmonic functions are studied by means of the notion of tangent which describes the behavior of the function near a given point. We show that there are plurisubharmonic functions with several tangents, disproving a conjecture of Reese Harvey.
متن کاملSome Remarks on Approximation of Plurisubharmonic Functions
Let Ω be a domain in Cn. An upper semicontinuous function u : Ω → [−∞,∞) is said to be plurisubharmonic if the restriction of u to each complex line is subharmonic (we allow the function identically −∞ to be plurisubharmonic). We say that u is strictly plurisubharmonic if for every z0 ∈ Ω there is a neigbourhood U of z0 and λ > 0 such that u(z) − λ|z|2 is plurisubharmonic on U . We write PSH(Ω)...
متن کاملLocal inequalities for plurisubharmonic functions
The main objective of this paper is to prove a new inequality for plurisubharmonic functions estimating their supremum over a ball by their supremum over a measurable subset of the ball. We apply this result to study local properties of polynomial, algebraic and analytic functions. The paper has much in common with an earlier paper [Br] of the author.
متن کاملThe ∂̄-neumann Operator on Lipschitz Pseudoconvex Domains with Plurisubharmonic Defining Functions
On a bounded pseudoconvex domain in C with a plurisubharmonic Lipschitz defining function, we prove that the ∂̄-Neumann operator is bounded on Sobolev (1/2)-spaces. 0. Introduction LetD be a bounded pseudoconvex domain in C with the standard Hermitian metric. The ∂̄-Neumann operator N for (p, q)-forms is the inverse of the complex Laplacian = ∂̄ ∂̄∗ + ∂̄∗∂̄ , where ∂̄ is the maximal extension of the C...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: MATHEMATICA SCANDINAVICA
سال: 1983
ISSN: 1903-1807,0025-5521
DOI: 10.7146/math.scand.a-12014